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Introduction – Photons and Excitons

❑ Polaritons are hybrid quasi-particles 

consisting of an exciton and a photon which 
are strongly coupled.

❑ When an 𝑒− absorbs a photon it is possible
that it “jumps” to a hole. Electrons jumping
from hole to hole explain the current flow in
semiconductors.

❑An 𝑒− which absorbs a photon may not
jump into a hole. In this case the (excited) 𝑒−

and the hole become bound by their EM
attraction. This 𝒆− - hole pair is a quasi-
particle called exciton.



Introduction - Microcavities 

❑ Microcavity structures consist of two mirrors to

form the cavity and a material to put in the cavity.

❑ Photons can be temporarily trapped in a
microcavity.

❑ The quality of the reflectivity of a microcavity is
determined by the 𝑸− factor.

❑ Mirrors

❑ DBRs High reflectivity up to 99.99%.
Alternating High (TiO2, Ta2O5) – Low (SiO2)
refractive index materials.

❑ Material

https://www.polaritonics.org/research/intro-to-polaritons

Organic (carbon based)

Inorganic (semiconductors, metals)

Metal (silver, gold, aluminium)

Distributed Bragg

Reflectors

https://www.polaritonics.org/research/intro-to-polaritons


Introduction - Polaritons 

❑ Polaritons are hybrid quasi-particles consisting of

an exciton and a photon which are strongly
coupled.

❑ Suppose a microcavity

❑A photon is absorbed, creating an exciton. Then it is
emitted back to the cavity and the exciton decays.
The photon, still bouncing in the cavity, can be again
absorbed by the material creating another exciton.

❑ Fast energy exchange between the photon and the
exciton strong coupling

Mirrors

Photon absorbing material

Polariton

Part-light and part-matter quasi-

particle with properties of both



Applications

❑ Polaritons simulators 

❑ Polariton circuits 

❑ Polariton lasers

❑ Polariton condensates



The polariton system
❑ Mixture of two polariton species in a double well potential.

❑ Each species (+) or (−) represents a polariton composed of a
circularly polarized photon 𝜎+ or 𝜎−, coupled to cavity exciton.

❑ Mean field Gross-Pitaevskii DNLS

❑ The polariton BEC is dissipative with decay rate

(exciton recombination and cavity photon losses)

❑ The polariton population are continuously replenished via

coupling to exciton reservoirs with rates

complex WF

polariton populations

The exciton populations in each 

reservoir are: 

𝑷𝑳 𝑹
+ : rate of exciton creation

(laser pumping)

𝚪𝑳 𝑹
+ : rate of decay of excitons

in the reservoir

𝑸𝑳 𝑹
+ : rate of stimulated

scattering of the reservoir

excitons into the condensate of

𝑁𝐿 𝑅
+ polaritons.



The polariton system - Approximations

❑ The stimulated scattering rate can be approximated by a
linear function of the of the reservoir exciton population:

❑Assume a sufficiently large reservoir

❑Assume that the reservoirs are weakly depleted by the
coupling to the BEC:

❑ The polariton gain/loss coefficients become:



Rendering the system PT-symmetric

❑ PT symmetry conditions:

i. Reflection symmetric

ii. Maintain balanced gain and loss

❑ This is translated to the conditions:

or

❑ Initially equal # of particles in each well

❑ Switch on tunneling coupling 𝐽

❑ Increase the pumping rate near the left well to
compensate losses

❑ Reduce the pumping rate near the right well in
order to make losses dominant

❑ Engineer the structure in order to balance loss
and gain



PT symmetry breaking and fixed points

❑ Review of the linear system: 𝑔𝑠 = 𝑔𝑐 = 0

❑ The (+) and − components decouple

❑ The PT symmetry breaking is determined by
the eigenvalues of the corresponding
Hamiltonian matrix:

❑ : PT symmetric phase Rabi-like
oscillations

❑ : PT broken phase

❑ Nonlinear system:

❑ Symmetry breaking info will be obtained from
the fixed points.

❑ We define new variables:

❑ New equations:

❑ Dimensionless time:



PT symmetry breaking and fixed points

❑ Fixed points:

❑ Linearizing stability eigenvalues

❑ Fixed point

❑A fixed point corresponds to the trivial solution

with equal polariton population in each well.

❑ The stability eigenvalues are:

stable
unstable

elliptic



Dynamics

❑ Initial configuration:

❑ Dynamics of the population imbalances

all + particles (L)

all − particles (R)

a) Hermitian (𝛾 = 0) Rabi-like oscillations
(non realistic for polariton systems)

b) The net loss is larger than the gain

c) With suitable engineering

d) Same as (c) but for

The PT symmetry preserves the coherent

dynamics. Here,



Dynamics

❑ Dependence of the dynamics on the nonlinearity strengths 𝑔𝑠, 𝑔𝑐.



Simulating a two-qubit system

❑ The two-species polariton system in a PT
symmetric double well can be mapped onto a
system of two qubits (or spin-1/2 particles)
coupled via exchange interaction.

❑ This analogy links a classical system described
by coupled-mode equations to a quantum system
of coupled spins.

❑ The complete basis for a two-qubit system
consists of four states

❑An arbitrary two-qubit state can be expanded as:

❑ We associate the + component of the polaritons
in each well with the amplitude of the state of
the spin [accordingly, for the (−) component].

❑ The superposition amplitudes 𝐶 given by:

with:

Our aim is to realize the SWAP gate between the two
spins representing qubits



Simulating a two-qubit system - Fidelity

❑ Simplest scenario

Initial conditions

•

•

•

•

❑ These initial condition can be represented as
input vectors

❑ Average Fidelity

We characterize gate transformation using the
fidelity formula

• 𝑛: Matrix dimensions (4 in our case)

• 𝑀 = 𝑈0
ϯ
𝑈

• 𝑈0
ϯ
: desired quantum gate

• 𝑈 : actual transformation we get from
simulations



Desired quantum gate

❑ Simplest scenario

❑ The dynamics are analytically solvable and for
each input state the time-dependent 𝐶 amplitudes
of the output state

are:

❑ The table represents the elements of the
transformation matrix 𝑈.

❑We choose as interaction time half the period
of the oscillation:

𝑡𝐽 = π/2

❑ We will use this as the desired quantum gate



State transfer with polaritons

❑ Linear PT system

❑ Still this system is analytically solvable and we
can find the 𝑈 transformation matrix.

❑ Selecting as interaction time 𝑡𝐽 = π/2 we find
the fidelity of the state transfer for different values
of loss/gain:

•

•

❑ Nonlinear PT system

❑ No analytic solution Numerical evaluation
of 𝐶s.

❑ Selecting as interaction time 𝑡𝐽 = π/2 we find
the fidelity of the state transfer for different
values of loss/gain:

•

•

•



State transfer with polaritons

❑ Nonlinear PT system

❑ This is the most general case for polaritons

❑ Parameters:

❑ By increasing the difference between 𝑔𝑠 and 𝑔𝑐

(but slowly)

❑ Example:



Conclusions

❑We have considered a two-species polariton mixture with self- and cross-interaction nonlinearities
in a PT – symmetric double well structure.

❑We have shown the existence of long-term, coherent (Rabi-like) oscillations of the two polariton
components in the presence of self- and cross-interactions, when the system lies in the PT-
symmetric phase.

❑ The modulation of the cross-interaction strength, with respect to the cross-interactions strength
induces different patterns in the dynamics of the polariton populations.

❑We have shown that this system can be mapped onto a quantum system of two-qubits (or two
spin-1/2 particles) via exchange interaction.

❑We have found that this –essentially classical system of two coupled BECs- can simulate quantum
state transfer with good fidelity.

Work under review: P.A.K, G. M. Nikolopoulos, and D. Petrosyan, “Coherent population oscillations and an effective spin-exchange interaction in a PT
symmetric polariton mixture”, arXiv: 1908.00851v1.



Perspectives and work in progress

❑ Our work can contribute to the pursue of analog simulations of interacting few-
and many-body quantum systems with coupled polaritons in polariton lattices.

❑ Currently: Dynamics and state transfer in PT-symmetric three level systems in
open and closed geometries and diamond lattices.

❑ Future: Consider the full system, add driving….
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