

HELLENIC REPUBLIC National and Kapodistrian University of Athens

State transfer in 1-D networks

"Workshop on local symmetries in wave physics" Karystos, 4-6 September 2019

Nikolaos Palaiodimopoulos

A 1-D Data Bus

Bose's idea:

Engineered J_i 's: length can be arbitrary

Optimization

Transfer for arbitrary initial and final sites, $|n\rangle \rightarrow |m\rangle$, for open and closed geometries:

$$F = \left| \left\langle m \right| e^{-iHt} \left| n \right\rangle \right|^2$$

In general:
$$F = f(J_1, ..., J_N, t)$$

Nelder-Mead optimization algorithm

Reachability Criteria

Eigenvalue equation: $H_N v_i = E_i v_i$

$$H_{N} = \begin{pmatrix} 0 & J_{1} & 0 & \cdots & J_{N} \\ J_{1} & 0 & J_{2} & & & \\ 0 & J_{2} & 0 & & & \\ \vdots & & \ddots & & \\ J_{N} & & & J_{N-1} & 0 \end{pmatrix} \qquad F = \left| \left\langle m \left| e^{-iHt} \right| n \right\rangle \right|^{2} = \\ \left| \sum_{i}^{N} v_{im} v_{in} e^{i\varphi_{i}} \right|^{2}, \text{ where } \varphi_{i} = E_{i}t$$

Necessary and sufficient conditions for PST

$$|v_{im}| = |v_{in}|$$
 $\varphi_i = \begin{cases} n\pi \\ (2n+1)\frac{\pi}{2}, & n = 0, 1, ... \end{cases}$

Numerical Results

PST: $1 \rightarrow 3$

$$J_1 = J_{max}, J_2 = 0.6J_{max}, J_3 = 0.8J_{max}, t = 4.967$$

Non-reachable PST's

Open chains

Even-sized chains: $n \leftrightarrow m$, for m > n and $m \le N/2$

Odd-sized chains: $n \leftrightarrow m$, for m > n and $m \le (N + 1)/2$ $n \leftrightarrow m$, when n = even and m = odd

Closed chains

Odd-sized chains: $n \leftrightarrow m$, for $N \neq 3$

Reachable PST's

Open chains

Mirror symmetric sites

Even-sized chains:

 $1 \leftrightarrow N - 1$

Closed chains

Even-sized chains

 $n \leftrightarrow m$

Perfect Graphs and Perfect State Transfer

Chromatic number = Maximal Clique number

Conjecture:

"If a graph is not perfect, then PST is impossible between any pair of vertices"

Fractional Revival / Partial Transfer

State Preparation & Generation of entanglement

Derive sufficient and necessary conditions

Latent symmetries - Isospectral Matrix Reduction - PST

State transfer protocol – SSH model

SSH Tri-junction

Boros et al. (2019)

Y gate: $-i\sigma_y$

We may need an extra leg!

Introducing environment

Thank you!

This research work was supported by the Hellenic Foundation of Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under the HFRI Ph. D Fellowship grant (GA. no. 868)