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Workshop on local symmetries in wave physics
September 4 – 6, 2019

Karystos
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Outline

Motivation: Discrete systems and graphs

Local symmetries in graphs

Isospectral reductions

Application of these insights to the problem of pretty good state transfer

Main goal of this talk: Convincing you that we can profit a lot from graph theory!
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Motivation: Discrete systems and graphs

The topic of this talk are systems described by matrices, such as:

Tight-binding systems: Spin networks, evanescently coupled waveguides,
acoustic airchannels1

Multi-level atoms (think about STIRAP).

Graphs: Transportation networks, food webs, social networks, power grids,
the world wide web, citation networks, gene regulatory networks, chemical
reaction networks.

The matrices describing graphs are often real-valued and symmetric; I will restrict
myself to such matrices in the rest of this talk.

1Zheng et al., “Observation of Edge Waves in a Two-Dimensional Su-Schrieffer-Heeger
Acoustic Network”.
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An example graph and its adjacency matrix
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Typical problems in graph theory

How well are the nodes interconnected? How many edges may one remove
before the graph splits into disconnected pieces?

How can I get from node A to node B? Applications in computer networks,
as well as in all navigation systems.

Which nodes are “more important” (fuzzy definition!) than others? An
example for this is the Google search algorithm.
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“Local” symmetries in graphs

Figure: Taken from2

2MacArthur, Sánchez-Garćıa, and Anderson, “Symmetry in Complex Networks”.
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Truly local symmetries in graphs

Consider the following graph:

1 2

34
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0.415 0.0877 −0.381 0.692 0 −0.365 0.218 −0.127
0.438 −0.505 0.153 −0.343 0 0 0.471 −0.437
0.438 0.505 −0.153 −0.343 0 0 −0.471 −0.437
0.315 −0.292 −0.430 0.0959 0 0.73 −0.174 0.241
0.216 0.0877 −0.381 −0.500 0 −0.365 0.218 0.609
0.315 0.292 0.430 0.0959 −0.707 0.183 0.174 0.241
0.315 −0.467 0.332 0.0959 0 −0.365 −0.609 0.241
0.315 0.292 0.430 0.0959 0.707 0.183 0.174 0.241
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Local symmetries in graphs II
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All eigenvectors can be chosen to be locally symmetric on the two red vertices, no
matter how the parameters are chosen.
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Local symmetries in graphs III

6
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Cospectrality

In graph theory (but more general, in linear Algebra!), a matrix M is said to have
cospectral indices u, v (vulgo: u, v are cospectral) if any of the following
equivalent conditions apply3

u and v are cospectral.

The spectrum of M \ u is equal to the spectrum of M \ v .

All eigenstates can be chosen to have parity ±1 with respect to an exchange
of u and v .

(Mk)u,u = (Mk)v ,v for all integer k > 0.

3Eisenberg, Kempton, and Lippner, “Pretty Good Quantum State Transfer in Asymmetric
Graphs via Potential”.
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The meaning of (positive integer) matrix powers
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Note: Due to the Cayley-Hamilton theorem, we only have to evaluate Mk<N

where N is the dimension of M.

Malte Röntgen Cospectrality, latent symmetries and isospectral reductionsWorkshop on local symmetries in wave physicsSeptember 4 – 6, 2019Karystos 11 / 27



Does this mean that I could design my Hamiltonian/matrix
to have locally symmetric eigenvectors by tuning its
integer-powers?

Absolutely!
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Isospectral reductions

Idea: “Compress” a matrix into a smaller matrix, whilst keeping (almost) all
of its spectrum.

This compression will be of help to understand local symmetries!
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Isospectral reductions

Figure: Taken from4

Given a matrix M (describing a graph), its isospectral reduction RS(M) over
the set of indices S is defined as

RS(M, λ) = MSS −MSS̄ (MS̄ S̄ − λI )
−1 MS̄S (1)

and is defined for all values of λ that are not eigenvalues of MS̄S̄ . The entries

of RS(M, λ) are rational functions p(λ)
q(λ) in λ.

The eigenvalues λi of RS(M, λ) are the numbers for which

det
(
RS(M, λi )− λi I

)
= 0. (2)

4Smith and Webb, “Hidden Symmetries in Real and Theoretical Networks”.
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Eigenvectors of isospectral reductions

For each eigenvalue λi of RS(M, λ), it features one eigenvector ~xi such that

RS(M, λi )~xi = λi~xi . (3)

Note that there may be more eigenvalues and eigenvectors than the
dimension of RS(M, λ)!

As every eigenvalue λi of RS(M, λ) is also an eigenvalue of M (cf. above),

there exists an eigenvector ~x ′i of M such that

M ~x ′i = λi ~x ′i . (4)

The eigenvectors of M and RS(M, λ) are related by

(~x ′i )S = ~xiCi , (5)

i.e., ~xi is the projection of ~x ′i onto the sites S , up to a normalization
constant Ci .
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Bisymmetric isospectral reductions and latent symmetries

Figure: Taken from5

We now restrict ourselves to the case where S contains only two sites
S = {u, v} and is bisymmetric. An example for such a bisymmetric matrix is

R{2,3}(G , λ) =

( 3λ
λ2−λ−2

λ+2
λ2−λ−2

λ+2
λ2−λ−2

3λ
λ2−λ−2

)
=

(
a(λ) b(λ)
b(λ) a(λ)

)
.

For bisymmetric RS(M, λ), all of its eigenvectors are of the form

~xi =

(
1
±1

)
∀ i . (6)

5Smith and Webb, “Hidden Symmetries in Real and Theoretical Networks”.
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Motivation: Perfect and pretty good state transfer

In any quantum computer, we need to transfer qubits throughout the device.
Ideally, the qubit of interest would not be affected by the transfer.

As a simple example, we would model the qubit as a single-site excitation
within a spin-network described by

H =
1

2

∑
(n,m)∈E

Jn
(
σ(x)
n σ(x)

m + σ(y)
n σ(y)

m

)
+

N∑
i=1

Biσ
(z)
i (7)

and transfer it across the network by simple time evolution.
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Motivation: Perfect and pretty good state transfer

Definition
Given a Hamiltonian H, we say that it admits pretty good state transfer
between u and v if, for any ε > 0, there is a time t > 0 such that

|〈u|exp(−iHt)|v〉| > 1− ε. (8)

where |u〉 , (|v〉) are the vectors with unit amplitude on site u (v) and zeros
everywhere else.
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Necessary and sufficient conditions for pretty good state
transfer

The following are necessary and sufficient conditions for pretty good state transfer
on a real-symmetric Hamiltonian H between sites u and v .

Each eigenvector |x〉 fulfills 〈u|x〉 = ±〈v |x〉.
There are no two degenerate eigenvectors |x1〉 , |x2〉 such that
〈u|x1〉 = + 〈v |x1〉 6= 0, 〈u|x2〉 = −〈v |x2〉 6= 0.

Let {λ+
i }, {λ

−
j } the eigenvalues associated to eigenvectors of

positive/negative parity on u, v and which are non-vanishing on these two
sites. Then, any integers {li ,mj} which fulfill∑

i

liλ
+
i +

∑
j

mjλ
−
j = 0

∑
i

li +
∑
j

mj = 0

must also fulfill
∑

i mi is even.
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Designing a system to host pretty good state transfer

Theorem
Leta M be a symmetric matrix with strongly cospectral indices u and v . Further,
let

P± =
′∏
i

(λ− λ±i )

where
∏′ denotes the restriction that degenerate eigenvalues only appear once in

the product.
Then, if

P+,P− are irreducible and have no common root, and if
Tr(P+)
deg(P+) 6=

Tr(P−)
deg(P−) where Tr denotes the sum of roots of a polynomial,

then there is pretty good state transfer between u and v .

aTheorem 2.11. from Eisenberg, Kempton, and Lippner, “Pretty Good Quantum
State Transfer in Asymmetric Graphs via Potential”
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The connection between isospectral reductions and P±

Let RS(M, λ) =

(
a(λ) b(λ)
b(λ) a(λ)

)
bisymmetric.

We then perform the similarity transform

R′S(M, λ) = A−1RS(M, λ)A =

(
a(λ) + b(λ) 0

0 a(λ)− b(λ)

)

with A =

(
1 1
1 −1

)
. We further define P ′±(λ) = a(λi )± b(λi )− λi .

The eigenvalues λi of R′S(M, λ) and RS(M, λ) are identical and given by
the roots of P ′±(λ), respectively.

The eigenvectors of RS(M, λ) are given by multiplying the corresponding
eigenvectors of R′S(M, λ) by A. Therefore, these are obviously (1, 1)T [for
eigenvalues λi fulfilling P ′+(λi ) = 0] and (1,−1)T [for eigenvalues λi fulfilling
P ′−(λi ) = 0].

The roots of the polynomials P ′±(λ) therefore are the eigenvalues of the
locally symmetric/anti-symmetric eigenvectors (which can be chosen not to
vanish on u, v) of M, respectively!
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Designing cospectral graphs
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How to design graphs with pretty good state transfer

In principle (details omitted here), pretty good state transfer can be obtained by
the following algorithm:

1 Design a parameter-dependent setup H(ξ) with cospectral vertices u, v .

2 Tune its eigenvalue spectrum to be non-degenerate.

3 Obtain the polynomials P±(ξ).

4 Properly tune ξ such that P±(ξ) are irreducible and fulfill Tr(P+)
deg(P+) 6=

Tr(P−)
deg(P−) .

If there are no eligible ξ, go back to step 1., change the Hamiltonian (e.g., by
adding sites) and start the algorithm anew.
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Open questions

Can we generalize the concept of cospectrality to more than two vertices?

Can we do a block-diagonalization of the Hamiltonian if there are cospectral
vertices? For cospectrality induced by global symmetries, it is possible.

What can we learn about “our” local symmetries from applying the
isospectral reduction?
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Thank you!
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