Cospectrality, latent symmetries and isospectral reductions

Malte Röntgen

Workshop on local symmetries in wave physics September 4 – 6, 2019 Karystos

Malte Röntgen

Cospectrality, latent symmetries and isospectral reduWorkshop on local symmetries in wave physicsSepter

- Motivation: Discrete systems and graphs
- Local symmetries in graphs
- Isospectral reductions
- Application of these insights to the problem of pretty good state transfer

Main goal of this talk: Convincing you that we can profit a lot from graph theory!

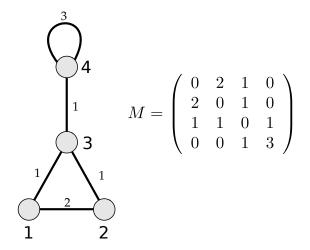
The topic of this talk are systems described by matrices, such as:

- $\bullet\,$ Tight-binding systems: Spin networks, evanescently coupled waveguides, acoustic airchannels^1
- Multi-level atoms (think about STIRAP).
- Graphs: Transportation networks, food webs, social networks, power grids, the world wide web, citation networks, gene regulatory networks, chemical reaction networks.

The matrices describing graphs are often real-valued and symmetric; I will restrict myself to such matrices in the rest of this talk.

¹Zheng et al., "Observation of Edge Waves in a Two-Dimensional Su-Schrieffer-Heeger Acoustic Network".

An example graph and its adjacency matrix



- How well are the nodes interconnected? How many edges may one remove before the graph splits into disconnected pieces?
- How can I get from node A to node B? Applications in computer networks, as well as in all navigation systems.
- Which nodes are "more important" (fuzzy definition!) than others? An example for this is the Google search algorithm.

"Local" symmetries in graphs

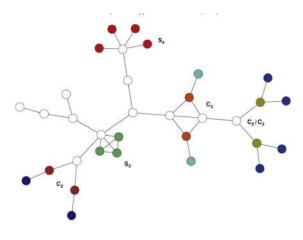


Figure: Taken from²

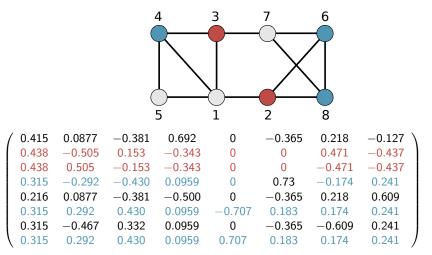
²MacArthur, Sánchez-García, and Anderson, "Symmetry in Complex Networks".

Malte Röntgen

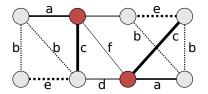
Cospectrality, latent symmetries and isospectral reduWorkshop on local symmetries in wave physicsSepter

Truly local symmetries in graphs

Consider the following graph:

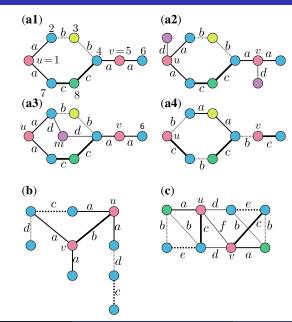


Local symmetries in graphs II



All eigenvectors can be chosen to be locally symmetric on the two red vertices, no matter how the parameters are chosen.

Local symmetries in graphs III

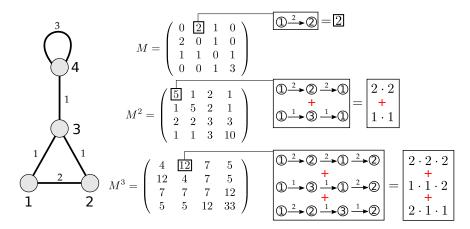


In graph theory (but more general, in linear Algebra!), a matrix M is said to have cospectral indices u, v (vulgo: u, v are cospectral) if any of the following equivalent conditions apply³

- *u* and *v* are cospectral.
- The spectrum of $M \setminus u$ is equal to the spectrum of $M \setminus v$.
- All eigenstates can be chosen to have parity ± 1 with respect to an exchange of u and v.
- $(M^k)_{u,u} = (M^k)_{v,v}$ for all integer k > 0.

³Eisenberg, Kempton, and Lippner, "Pretty Good Quantum State Transfer in Asymmetric Graphs via Potential".

The meaning of (positive integer) matrix powers



Note: Due to the Cayley-Hamilton theorem, we only have to evaluate $M^{k < N}$ where N is the dimension of M.

Does this mean that I could design my Hamiltonian/matrix to have locally symmetric eigenvectors by tuning its integer-powers?

Absolutely!

- Idea: "Compress" a matrix into a smaller matrix, whilst keeping (almost) all of its spectrum.
- This compression will be of help to understand local symmetries!

Isospectral reductions

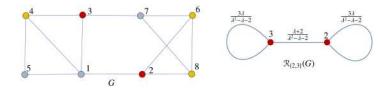


Figure: Taken from⁴

• Given a matrix M (describing a graph), its isospectral reduction $\mathcal{R}_S(M)$ over the set of indices S is defined as

$$\mathcal{R}_{\mathcal{S}}(M,\lambda) = M_{\mathcal{S}\mathcal{S}} - M_{\mathcal{S}\bar{\mathcal{S}}} \left(M_{\bar{\mathcal{S}}\bar{\mathcal{S}}} - \lambda I\right)^{-1} M_{\bar{\mathcal{S}}\mathcal{S}}$$
(1)

and is defined for all values of λ that are not eigenvalues of $M_{\bar{S}\bar{S}}$. The entries of $\mathcal{R}_{S}(M, \lambda)$ are rational functions $\frac{p(\lambda)}{q(\lambda)}$ in λ .

• The eigenvalues λ_i of $\mathcal{R}_S(M, \lambda)$ are the numbers for which

$$det\left(\mathcal{R}_{S}(M,\lambda_{i})-\lambda_{i}I\right)=0.$$
(2)

⁴Smith and Webb, "Hidden Symmetries in Real and Theoretical Networks".

Cospectrality, latent symmetries and isospectral reduWorkshop on local symmetries in wave physicsSepter

Eigenvectors of isospectral reductions

• For each eigenvalue λ_i of $\mathcal{R}_{\mathcal{S}}(M,\lambda)$, it features one eigenvector $\vec{x_i}$ such that

$$\mathcal{R}_{\mathcal{S}}(M,\lambda_i)\vec{x_i} = \lambda_i \vec{x_i}.$$
(3)

Note that there may be *more* eigenvalues and eigenvectors than the dimension of $\mathcal{R}_{\mathcal{S}}(M, \lambda)$!

• As every eigenvalue λ_i of $\mathcal{R}_{\mathcal{S}}(M, \lambda)$ is also an eigenvalue of M (cf. above), there exists an eigenvector $\vec{x'_i}$ of M such that

$$M\vec{x'}_i = \lambda_i \vec{x'}_i. \tag{4}$$

• The eigenvectors of M and $\mathcal{R}_{\mathcal{S}}(M, \lambda)$ are related by

$$(\vec{x'}_i)_S = \vec{x}_i C_i, \tag{5}$$

i.e., $\vec{x_i}$ is the projection of $\vec{x'_i}$ onto the sites *S*, up to a normalization constant C_i .

Bisymmetric isospectral reductions and latent symmetries

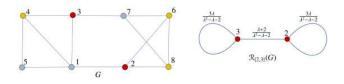


Figure: Taken from⁵

• We now restrict ourselves to the case where S contains only two sites $S = \{u, v\}$ and is *bisymmetric*. An example for such a bisymmetric matrix is

$$\mathcal{R}_{\{2,3\}}(G,\lambda) = \begin{pmatrix} \frac{3\lambda}{\lambda^2 - \lambda - 2} & \frac{\lambda + 2}{\lambda^2 - \lambda - 2} \\ \frac{\lambda + 2}{\lambda^2 - \lambda - 2} & \frac{3\lambda}{\lambda^2 - \lambda - 2} \end{pmatrix} = \begin{pmatrix} \mathsf{a}(\lambda) & \mathsf{b}(\lambda) \\ \mathsf{b}(\lambda) & \mathsf{a}(\lambda) \end{pmatrix}.$$

• For bisymmetric $\mathcal{R}_{\mathcal{S}}(M, \lambda)$, all of its eigenvectors are of the form

$$\vec{x}_i = \begin{pmatrix} 1\\ \pm 1 \end{pmatrix} \ \forall \ i. \tag{6}$$

⁵Smith and Webb, "Hidden Symmetries in Real and Theoretical Networks".

Cospectrality, latent symmetries and isospectral reduWorkshop on local symmetries in wave physicsSepter

- In any quantum computer, we need to *transfer* qubits throughout the device. Ideally, the qubit of interest would not be affected by the transfer.
- As a simple example, we would model the qubit as a single-site excitation within a spin-network described by

$$H = \frac{1}{2} \sum_{(n,m)\in E} J_n \left(\sigma_n^{(x)} \sigma_m^{(x)} + \sigma_n^{(y)} \sigma_m^{(y)} \right) + \sum_{i=1}^N B_i \sigma_i^{(z)}$$
(7)

and transfer it across the network by simple time evolution.

Definition

 Given a Hamiltonian H, we say that it admits pretty good state transfer between u and v if, for any ε > 0, there is a time t > 0 such that

 $|\langle u|exp(-iHt)|v\rangle| > 1 - \epsilon.$

where $|u\rangle$, $(|v\rangle)$ are the vectors with unit amplitude on site u(v) and zeros everywhere else.

(8)

Necessary and sufficient conditions for pretty good state transfer

The following are necessary and sufficient conditions for pretty good state transfer on a real-symmetric Hamiltonian H between sites u and v.

- Each eigenvector $|x\rangle$ fulfills $\langle u|x\rangle = \pm \langle v|x\rangle$.
- There are no two degenerate eigenvectors $|x_1\rangle$, $|x_2\rangle$ such that $\langle u|x_1\rangle = + \langle v|x_1\rangle \neq 0$, $\langle u|x_2\rangle = \langle v|x_2\rangle \neq 0$.
- Let {λ_i⁺}, {λ_j⁻} the eigenvalues associated to eigenvectors of positive/negative parity on *u*, *v* and which are non-vanishing on these two sites. Then, any integers {*l_i*, *m_j*} which fulfill

$$\sum_{i} l_{i}\lambda_{i}^{+} + \sum_{j} m_{j}\lambda_{j}^{-} = 0$$
$$\sum_{i} l_{i} + \sum_{j} m_{j} = 0$$

must also fulfill $\sum_i m_i$ is even.

Theorem

Let^a M be a symmetric matrix with strongly cospectral indices u and v. Further, let

$$\mathcal{P}_{\pm} = \prod_{i}^{\prime} (\lambda - \lambda_{i}^{\pm})$$

where \prod' denotes the restriction that degenerate eigenvalues only appear once in the product.

Then, if

- P_+, P_- are irreducible and have no common root, and if
- $\frac{Tr(P_+)}{deg(P_+)} \neq \frac{Tr(P_-)}{deg(P_-)}$ where Tr denotes the sum of roots of a polynomial,

then there is pretty good state transfer between u and v.

^aTheorem 2.11. from Eisenberg, Kempton, and Lippner, "Pretty Good Quantum State Transfer in Asymmetric Graphs via Potential"

The connection between isospectral reductions and P_{\pm}

- Let $\mathcal{R}_{\mathcal{S}}(M, \lambda) = \begin{pmatrix} a(\lambda) & b(\lambda) \\ b(\lambda) & a(\lambda) \end{pmatrix}$ bisymmetric.
- We then perform the similarity transform

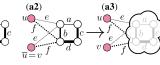
$$\mathcal{R}'_{\mathcal{S}}(M,\lambda) = A^{-1}\mathcal{R}_{\mathcal{S}}(M,\lambda)A = \begin{pmatrix} a(\lambda) + b(\lambda) & 0\\ 0 & a(\lambda) - b(\lambda) \end{pmatrix}$$

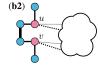
with
$$A = egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$$
. We further define $P'_{\pm}(\lambda) = a(\lambda_i) \pm b(\lambda_i) - \lambda_i$.

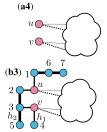
- The eigenvalues λ_i of R'_S(M, λ) and R_S(M, λ) are identical and given by the roots of P'_±(λ), respectively.
- The eigenvectors of $\mathcal{R}_{S}(M,\lambda)$ are given by multiplying the corresponding eigenvectors of $\mathcal{R}'_{S}(M,\lambda)$ by A. Therefore, these are obviously $(1,1)^{T}$ [for eigenvalues λ_{i} fulfilling $P'_{+}(\lambda_{i}) = 0$] and $(1,-1)^{T}$ [for eigenvalues λ_{i} fulfilling $P'_{-}(\lambda_{i}) = 0$].
- The roots of the polynomials P'_±(λ) therefore are the eigenvalues of the locally symmetric/anti-symmetric eigenvectors (which can be chosen not to vanish on u, v) of M, respectively!

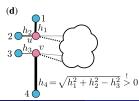
Designing cospectral graphs

(a1) $u \stackrel{e}{\leftarrow} 0 \stackrel{a}{\xrightarrow{b}} \stackrel{b}{\xrightarrow{d}}$









In principle (details omitted here), pretty good state transfer can be obtained by the following algorithm:

- **O** Design a parameter-dependent setup $H(\xi)$ with cospectral vertices u, v.
- Intersection of the sector of the sector
- Obtain the polynomials $P_{\pm}(\xi)$.
- Properly tune ξ such that P_±(ξ) are irreducible and fulfill Tr(P₊) ≠ Tr(P₋)/deg(P₋).
 If there are no eligible ξ, go back to step 1., change the Hamiltonian (e.g., by adding sites) and start the algorithm anew.

- Can we generalize the concept of cospectrality to more than two vertices?
- Can we do a block-diagonalization of the Hamiltonian if there are cospectral vertices? For cospectrality induced by global symmetries, it is possible.
- What can we learn about "our" local symmetries from applying the isospectral reduction?

Thank you!

References I

Eisenberg, Or, Mark Kempton, and Gabor Lippner. "Pretty Good Quantum State Transfer in Asymmetric Graphs via Potential". In: Discrete Math. (Nov. 28, 2018). ISSN: 0012-365X. DOI: 10.1016/j.disc.2018.10.037. URL: http: //www.sciencedirect.com/science/article/pii/S0012365X18303716 (visited on 07/01/2019).

MacArthur, Ben D., Rubén J. Sánchez-García, and James W. Anderson. "Symmetry in Complex Networks". In: *Discrete Appl. Math.* 156.18 (Nov. 2008), pp. 3525–3531. ISSN: 0166218X. DOI: 10.1016/j.dam.2008.04.008. URL:

http://linkinghub.elsevier.com/retrieve/pii/S0166218X08001881
(visited on 03/28/2018).

Smith, Dallas and Benjamin Webb. "Hidden Symmetries in Real and Theoretical Networks". In: Physica A 514 (Jan. 15, 2019), pp. 855-867. ISSN: 0378-4371. DOI: 10.1016/j.physa.2018.09.131. URL: http: //www.sciencedirect.com/science/article/pii/S0378437118312809 (visited on 10/30/2018). Zheng, Li-Yang et al. "Observation of Edge Waves in a Two-Dimensional Su-Schrieffer-Heeger Acoustic Network". In: (Mar. 26, 2019). arXiv: 1903.11961 [physics]. URL: http://arxiv.org/abs/1903.11961 (visited on 08/25/2019).